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Introduction – Demands for Energy 
Storage and Lightweight 

• Need to reduce demands of system as whole 

 City car; 98% of energy associated with 
weight 

 Halving weight doubles range 

 

• Adopting composites provide weight savings  

 Electric vehicles with reasonable 
range/endurance  

 

• Structural power materials  

 undertake two roles – electrical energy 
storage & carry mechanical load.  

 

Volvo electric vehicle 



Multifunctional design of materials 

multifunctional material that simultaneously carries mechanical loads whilst 
storing electrical energy – ‘massless energy’ 

Multifunctional material 

Constituents simultaneously & 
synergistically undertake two roles 

 

Weztel & Snyder, US Army Research Labs   

Multifunctional structure 

Distinct constituent components 
packaged together 

 

J. P. Thomas & M. A. Qidwai, JOM. v57 p18-24. 2005.  

   introduce multifunctionality in composites 
   structural and non-structural (energy storage capacity) functions 



Structural power design example 

Tesla Roadster 
1230kg 

450kg Battery 780kg Structure/Systems 
Ω S = 1 
Ω E = 0 

Ω S = 0 
Ω E = 1 

 Define ΩS= structural efficiency 
ΩS = 1 implies fully structural (relative to nominal composite) 
ΩS = 0 implies no structural load bearing capacity 

 Define ΩE = energy storage efficiency 
ΩE = 1 implies full electrical energy storage (relative to nominal energy 

storage device) 
ΩE = 0 implies no electrical energy storage 
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Structural power design example 

Ω s = 1 
Ω E = 0 

Ω s = ? 
Ω E = ? 

Ω s = 0 
Ω E = 1 

Structural Power Material 

Ωs =ΩE= 1;  Ideal multifunctional energy source that can be designed into the structure without 
any compromise in energy output - Maximum mass saving of 450 kg 

 
Ωs , ΩE < 1  More realistic examples where the structural performance of the energy source 
leads to a compromise in the energy output  

1E SΩ +Ω >

Potential designs  
to save 180 kg: 
ΩE = 0.5, ΩS = 0.7 
ΩE = 0.8, ΩS = 0.48 

Rule of thumb 



Vision and ambition 

Driven by novel 
material design 

for future 

Lead towards 
energy efficient, 
environmentally 

friendly 
materials 

multifunctional 
structural 

power 
composites 

Light-weight  
improve energy 

efficiency 

Strong  
carry mechanical 

load 

Efficient 
provide energy 

storage 

Multifunctional  
save system mass 

and volume 

Hybrid/ 
electric 
vehicles 

Aerospace 

Portable 
electronics 

Military 
application 

Oil and gas 
industry 



• Structural Power Materials 

 New & technically challenging  

 Potentially huge savings in diverse range of 
applications 

• Interdisciplinary skills required 

 Electrochemistry, polymer chemistry, 
mechanical engineering, materials science, 
physics, chemical engineering 

• Spectrum of materials – modify proportion of matrix 
constituents to change characteristics  

 Mechanically dominated – e.g. bike frame 
powering a GPS, (ΩS>ΩE) 

 Electrically dominated – e.g. shell of a radio 
controlled aircraft, , (ΩE>ΩS) 

Interdisciplinary materials research  

Swerea SICOMP first structural battery 



State of the Art 

  

Structural Fuel Cell  (ARL) 

Structural Supercapacitor (Imperial) 
NiOH/ZnO Structural Batteries  
(BAE Systems/Lola)  

Li-ion Structural Battery (Swerea 
SICOMP/KTH) 



Make carbon fibre composites into batteries 

Li-ion intercalation in carbon 
fibre battery electrodes 
 
Li-ion transportation in solid 
polymer electrolyte matrices 



Carbon Fibres – do they have 
potential for multifunctionality? 

Material comparison for min weight designs 
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Capacity of PAN-based carbon fibres 

IMS65 unsized 

Similar behaviour as 
a graphite electrode! 

Kjell et al, J Electrochem Soc., 2011 



Impact of electrochemical cycling on the 
tensile properties of carbon fibres 

Jacques et al, 2012 



Structural electrolyte polymer matrix materials 
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SPE – Effect of crosslink density and Li-salt 
 
 
Thermoset electrolyte SPEs 

• Crosslinked PEG 
methacrylates 

• Lithium salt dissolved in 
monomer mixture prior to 
cure 

• Lithium ions can coordinate 
to oxygen in the ethylene 
oxide (EO) unit 
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Mechanical Enhancement 

Diffusion Enhancement 

Willgert et al, 2011 



Ionic conductivity vs. Modulus 
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•  Higher crosslink density gives higher modulus but lower ion transport number 
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Conflicting requirements:  
high polymer mobility improves ion transport but reduces mechanical 
performance  

Innovative SPE matrix materials 

 Nanostructure to ensure structural robustness whilst allowing ion 
migration  

Microstructures for multifunctional matrices, Imperial 



Device architecture – Structural Battery 

Structural Battery (ARL) 

Structural Battery (SICOMP) 



• Power Density; fundamental issue  
 Moderate electrodes conductivity,  
 Robust matrix , inhibiting ion migration  
• Matrix dominated mechanical properties;  
 Dictated by delamination & compression , 
 Additional electrical functionality, 
 Conflicting demands on fibre/matrix interface 
• Cost and fabrication – principal hurdle for 

polymer composites; 
 Structural power materials – make in moisture 

free environment (<50ppm),  
 Not amenable to finishing processes (cutting 

and drilling) 
• Ownership Issues;  
 Durability, repair, lifing, recycling, safety, etc 

Technical & non-technical needs & bottlenecks 



Opportunities, synergies & common themes 
• Distributed energy storage for safer road vehicles 

• Highly diverse range of potential applications 

 As performance improves, it has sparked interest from other sectors  

• Highly multidisciplinary topic  - Electrochemistry & structural materials 

 Fertile ground for development of new technologies  

 Novel material architectures  - stimulating development of monofunctional 
electrical & mechanical materials 

 Solutions for conventional composites - electrical conductivity (lightning strike)  

Energy harvesting Lightning strike protection Electrical connections 



Structural Power Materials - Summary 
Paradigm shift for energy materials 
Potential to make a considerable difference to how we store 

and deliver energy in 2050 
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Current funding - STORAGE 
Composite Structural Power Storage for Hybrid Vehicles 

• Started January 2010 for 42 months (€3.3M, 9 partners) 

• Led by Imperial, who are focusing on supercapacitors . SICOMP leads battery research 

• Industrial partners cover the value chain addressing energy demands of future hybrid 
vehicles  

• Demonstrator product will be a booth lid structure (target is 15% weight saving over 
standard supercapacitor/battery combination) 

http://www.bam.de/index_en.htm
http://www.etcab.se/index.htm
http://upload.wikimedia.org/wikipedia/commons/9/9e/IDET2007_reactive_armor_DYNA.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d9/Aravacametroligero.jpg


Component Design and Implementation 

  



Questions? 

The Economist 
Professional Engineer 

New York Times 

Materials world New Scientist 

CNBC 
www.energyopportunities.tv/Editorial-Features/An-
energy-storage-revolution 
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