

AGENDA:

- Vacuum bagging layup and types.
- Vacuum Bagging material.
- Step sanding and taper sanding, or not.
- Heating devices and molding.
- Tool.
- Hot bonder with accessories.
- Composite Structure build up:
 - Monolithic Structure
 - Sandwich structure.
- Cure cycle
- Failure awareness during layup and cure cycle.

SKILLMAN DAY 2

VACUUM BAGGING

VACUUM BAGGING AND OTHER CURING PROCESSES

VACUUM BAGGING AND OTHER CURING PROCESSES

Airbus Repair COVER PLY OVERLAP LAST PLY 12mm (0.47in.) FIRST PLY OVERLAP 15mm (0.59in.) <३> SECTION CORE REPLACEMENT PLUG A - A ADHESIVE PASTE CORE CLOSING WHEN REQUESTED BY SPECIFIC CHAPTER REPAIR MATERIALS AND LAY-UP ACCORDING TO SPECIFIC CHAPTER S RADIUS ALL CORNERS Wet Lay-Up Repair - one skin damaged

Vacuum bagging material.

BAGGING MATERIAL AND TOOL

STEP SANDING AND TAPER SANDING

STEP SANDING AND TAPER SANDING

First remove damaged material and prepare area for repair

Determine plies/orientations in the original structure & develop repair

Replace plies/orientations to match the original structure

A330 Fairing Panel 191CB

PLY N°	ORIENTATION				
-1	0°				
-2	45°				
-3	90°				
-4	0°				
-5	0°				
-6	0°				
-7	0°				
-8	0°				
-9	0°				
-10	90°				
-11	45°				
-12	0°				
-13	0°				
-14	45°				
-15	90°				
-16	0°				
-17	0°				
-18	45°				
-19	0°				
-20	0°				
-21	0°				
-22	45°				
-23	0°				
-24	0°				
-25	90°				
-26	45°				
-27	0°				
-28	0°				
-29	45°				
-30	90°				
-31	0°				
-32	0°				
-33	45°				
-34	0°				

PLY ORIENTATION TABLE

-36

-38

-40

-41

-42

-45

-47

-51

-52

-53

-56

-58

-62

-63

0°

90°

45°

0° 45°

90°

0° 45°

0°

0°

45°

90°

45° 0°

0° 0° 45° 0°

0°

0°

90°

0° 0°

A330 Fairing Panel 191CB 0° 0° 45° 0°

LAY-UP FIBER LAMINATING

- Bagging film one upper and lower piece.
- Measure weight of Fibers.
- Resin 1.2 as general times Fiber weight 1.1.2
- Segregate resin to Fiber between the to layer of Bagging film.
- Draw the deferent sizes of fibers on outside bagging film.
- Cut out the needed sizes and in direction as repair guideline.
- Prepared cut out can be stored in freezer on -18°C. to stop Curing process.
- Caution Be aware of air bobbles.

Typical Wet Layup Repair Process

Remove damaged skin & core then taper-scarfed skin

Repair/fill core cavity as required & machine flush

Typical Wet Layup Repair Process

Apply peel ply, bleeder, & breather materials and vacuum bag for cure

Typical Wet Layup Repair Process

After curing, remove breather, bleeder, & peel ply and inspect the repair

PREPREG LAY-UP

General Roles:

- Higher cure temperature.
- Film adhesive to be added.
- No spillage of Adhesive.
- Faster repair procedure.
- Stores problem and registration.

Heating devises

- · Heat/Hot bonder with heat blanket.
- Infrared light
- Heat Bulb
- Heat Gun
- Room temperature curing.
- Autoclave oven

Heating devises

Heating devises

Molding

Figure 5-1-10. The pressure intensifier prevents the accumulation of resin in corners and highvold-content areas

From www.flightglobal.com - June 18, 2013 10:30 AM

"When the Airbus A350 first took to the skies last week, much attention was focused on the Rolls-Royce Trent XWB powerplants that made the flight possible...."

Figure 5-1-7. Large Invar tool for aircraft production

Courtesy of Airbus

Hot bonder

Cure Cycle / Varme Teknik

- RAMP UP
- HOLD ON SOAK
- COOL DOWN

- THE MORE HEAT THE BEATER STRINGS.
 - Always follow the SRM instruction.
 "WHY"

MANUFACTURER/CODE	MATERIAL NO. (CML NO.)	MIXING RATIO (PARTS BY WEIGHT RESIN : HARDENER)	CONSISTENCY	POT LIFE AT 25 °C (77 °F)	GEL TIME AT 25 °C (77 °F) (HOURS)	CURING CYCLE <u><7></u>	FLOW ON VERTICAL SURFACES	SHRINKAGE
VANTICO / ARALDITE AW106 + HARDENER HV953U <3> <5>	<u>08-001</u>	100:80	Paste	100 min. for approx. 100 g (3.5 oz) amount	<u>ò1></u>	24 hours at 25 °C (77 °F) or 3 hours at 40 °C (100 °F)	yes <u><4></u>	high
3M / EC1838 B/A	<u>08-001A</u>	100:100	Paste	Approx. 1 hour for 100 g (3.50 z) amount	5 6	1 hour at 70 °C (160 °F) <2> 7 days at 25 °C (77 °F) or 2 hours at 65 °C (150 °F) <2> or 30 minutes at 90 °C (200 °F) <2>	no	moderate
VANTICO / ARALDITE AV138 + HARDENER HV998	<u>08-010</u>	100:40	Paste	35 min. for approx. 100 g (3.5 oz) amount	3	48 hours at 25 °C (77 °F) or 16 hours at 40 °C (100 °F) or 1 hour at 70 °C (160 °F) <2>	no	moderate
VANTICO / ARALDITE AW134 + HARDENER HY994 <3>	08-010A	100:40	Paste	60 to 70 min. for 100 g (3.5 oz) amount	3	1 hour at 60 °C (140 °F) <2> or 20 minutes at 80 °C (180 °F) <2>	yes <u><4></u>	moderate
VANTICO / ARALDITE AW134 + HARDENER HV997 <3>	<u>08-010A</u>	100:60	Paste	50 to 70 min. for 100 g (3.5 oz) amount	3	8 hours at 25 °C (77 °F) or 30 minutes at 60 °C (140 °F) <2> or 15 minutes at 80 °C (180°F) <2>	yes <u><4></u>	moderate
HYSOL / EA9321 <3>	08-010D	100:50	Thixothropic	40 min. for approx. 450 g (16 oz) amount	√ <u><1></u>	7 days at 25 °C (77 °F) or 1 hour at 80 °C (176 °F) <2>	yes <u><4></u>	moderate
HYSOL / EA9309.3NA <3>	<u>08-017</u>	100:22	Paste	35 min. for approx. 450 g (16 oz) amount	5	3 to 5 days at 25 °C (77 °F) or 1 hour at 80 °C (180 °F) <2>	yes <u><4></u>	moderate
3M / EC2216 B/A <3>	08-017A	100:140	Paste	90 min. for 100 g (3.5 oz)	5	7 days at 25 °C (77 °F) or 2 hours at 65 °C (150 °F) <u><2></u>	yes <u><4></u>	moderate
HYSOL / EA934 NA	<u>08-051</u>	100:33	Thixothropic	40 min. for approx. 450 g (16 oz) amount	2	5 to 7 days at 25 °C (77 °F) or 8 hours at 50 °C (120 °F) or 1 hour at 90 °C (200 °F) <2>	no	moderate
HYSOL / EA9394 A/B	<u>08-078</u>	100:17	Thixothropic	100 min. for 450 g (16 oz) amount	<u><6></u>	5 days at 25 °C (77 °F) or 70 minutes at 70 °C (160 °F) <2>	no	moderate
VANTICO / ARALDITE 420 A/B <3>	08-089	100:40	Paste	1 hour for approx. 100 g (3.5 oz) amount	6	7 days at 25 °C (77 °F) or 4 hours at 50 °C (120 °F) or 1 hour at 120 °C (250 °F) <2>	yes <u><4></u>	moderate

Table 1 - Paste Adhesives

- <1> Gellation at RT (Room Temperature) not required. Cure cycle can be applied directly.
- <2> Tolerances: \pm 5 °C (9 °F) on curing temperature and 0/+ 15 minutes on curing time.
- <3> Not recommended for core closing.
- <4> If required add thickening agent (Material No. $\underline{05-089}$), refer to Paragraph $\underline{4.A.(3).(e)}$.
- <5> Unless otherwise stated in specific Chapter. Do not use this paste for potting and core splicing.
- <6> Wait for 1 hour minimum at RT prior to curing.

For core closing and potting wait for 6 hours minimum at RT prior to curing. Alternatively: For core closing and potting wait for 10 hours minimum at RT then perform the nex repair steps, refer to Paragraph

51 - 47 - Heat up rate 1° C to 3° C (2° F to 6° F) per minute. Cool down rate maximum 3° C (6° F) per minute.

N0TES

• KEEP A MINIMUM VACUUM OF 22 INCHES (0.56 M) OF ${\rm H_g}$ (MERCURY) DURING THE FULL CURE CYCLE.

N0TES

 KEEP A MINIMUM VACUUM OF 22 INCHES (0.56 M) OF Hg (MERCURY) DURING THE FULL CURE CYCLE.

FAILURE DURING CURE AND BAGGING

- Power interrupting
- 2. Air pressure interrupting
- Porosity in thick laminate.
- 4. Entrapped air.
 - Mixture of air to Matrix.
- Prober cleaning

- Vacuum bag ruptures at sharp corner or bridge causing pressure loss
- Caul plate severs inner bag allowing resin to escape into breather pack
- 3. Caul plate bridges over top of dam causing low pressure area
- 4. Too much bleeder material overbleeds laminate
- Improperly sealed dams allow resin to escape into breather pack

Theoretical Task

Classroom task

Make a calculation:

- 1. 112 g Glass fiber need resin 1.2 times with 2-part Epoxy resin (A/B) mixed by 100/35, how much gram resin and harder you need?
- 2. 80-gram Epoxy resin needed, calculate the needed harder and resin?

Resin/Harder Mix Ratio by Weight: 100/35

Calculation:

Total weight of Resin/hardener mixture is = Glass fabric gram * 1.2

Weight of resin needed = 100/135 * Glass fabric gram * 1.2

Weight of hardener needed = 35/135 * Glass fabric gram * 1.2

Composite sandwich panel fabrication:

Make a sandwich panel with Laminate from task 1, Nomex core and 4 ea. 300 g Glass fiber layers as pr. Drawing. (3 side with 30 mm Monolithic structure and 1 side with 90° sandwich structure.

Caution: USE SANDING ROOM AND PROTECTIVE BREATING MASK WHEN SANDING.

Caution: FOLLOW MSDS FOR CORRECTIVE PROTECTION. (Hand protection, ect......)

Caution: OBSERVE BEFORE WORKING WHERE PROTECTION IS STORED.

- Prepare the Monolithic laminate from task 1 and 1 ea. Nomex core to fabrication a sandwich panel, with 3 ea. side 45° and 1 ea. Side 90°.
- 2) Prepare 4 ea. Layers 300g Glass fiber (Wet layup), with resin mixture 1: 1.2
- Prepare (PRO SET LAM 125/226 Resin, 100/35) mixture of Adhesive (60 G) and mix it together with Micro balloons to make the pasta tick as tooth pasta.
 - a. Wet one side of the Monolithic laminate with one layer of the mixed resin above 1, 5 mm thick layer.
 - Install the Nomex core to the weeded monolithic laminate.
 - c. Lay up the prepared 4 ea. 300 g glass fiber as pr. Drawing.
- Use a mould plate covered with non-perforated film as a resin barrier.
 - Perform the bagging of the sandwich panel for curing process, together with a gouge plate (Optional) above the Breather.
 - Install 3 ea. thermo couplers for the curing process.
- Set the hot bonder for 8 hours/80°C curing process.

